

    
      
          
            
  
archetypal 2.17

archetypal is a Python package designed with the objective of helping building energy modelers and researchers
maintain collections of building archetypes. archetypal depends on eppy [https://eppy.readthedocs.io/] for EnergyPlus models and makes use of
great packages such as pandas [http://pandas.pydata.org] for data structure processing and tsam [https://github.com/FZJ-IEK3-VSA/tsam] for time series aggregation.



Description

As building energy modelers ourselves, we found it was sometimes difficult to use scripting language to retrieve,
modify, simulate and analyze Building Energy Models (BEM). This is why archetypal was created. We built two main
capabilities into the package:


	The conversion of EnergyPlus to TRNBuild [http://sel.me.wisc.edu/trnsys/index.html] models (shout out to TRNSYS users!)


	The conversion of EnergyPlus to UMI [http://web.mit.edu/sustainabledesignlab/projects/umi/index.html] Template Files.




archetypal also features a Command Line Interface (CLI) which means that users can execute
commands in the terminal instead of writing a python script. In addition, we believe reproducible research through
Jupyter Notebooks, for instance, is the way foreword. Therefore, all the modules are discoverable and can be imported
independently.


Getting Started


	Installation

	For MacOS/Linux users

	Caching






User Guide


	1. Converting IDF models
	1.1. Converting IDF to UMI





	2. Reading and Running IDF files
	2.1. Reading

	2.2. Editing

	2.3. Running





	3. Parallel Processing

	4. Managing Schedules
	4.1. Reading Schedules

	4.2. Converting Schedules

	4.3. Plotting Schedules





	5. Creating Umi template
	5.1. Umi Template Structure

	5.2. Defining materials

	5.3. Defining material layers

	5.4. Defining constructions

	5.5. Defining schedules

	5.6. Defining window settings

	5.7. Defining DHW settings

	5.8. Defining ventilation settings

	5.9. Defining zone conditioning settings

	5.10. Defining zone construction sets

	5.11. Defining zone loads

	5.12. Defining zones

	5.13. Defining building template

	5.14. Creating Umi template





	6. Reading and Editing UMI Template Files
	6.1. Combining template libraries





	7. Troubleshooting
	7.1. MacOs Catalina Compatibility

	7.2. Missing transition programs










Reference Guide


	Command reference

	Modules







Indices and tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  

    
      
          
            
  
Installation


Requirements


Warning

Archetypal is most compatible with energyplus v9.2.0 (download [https://github.com/NREL/EnergyPlus/releases/tag/v9.2.0] here at the bottom of
the page). although it will parse, convert and simulate other versions
(older or newer).



EnergyPlus [https://energyplus.net] should be installed in it’s default location. On Windows that would be in C:\EnergyPlusV9-2-0 and on
MacOS that would be in /Applications/EnergyPlus-9-2-0. For custom install locations, see Creating an Umi template

It is also recommended that the older transition programs be installed as well. These programs allow older IDF files
(versions 7.2 and below) to be upgraded to version 9-2-0 (and above). Since these, don’t come by default with
EnergyPlus, they need to be installed by hand. A script has been created for windows (see Installation from
scratch). For macOS, refer to the supplementary conversion programs [http://energyplus.helpserve.com/Knowledgebase/List/Index/46/converting-older-version-files].



Installation from scratch

This first step should be helpful for users that are not familiar with python environments. If you already have python
installed and think that you can manage the installation a new package using pip, then you can skip to the next
section.


Download & Install MiniConda (or the full Anaconda)

found at the following URL: https://docs.conda.io/en/latest/miniconda.html

Launch the executable and select the following settings:


	InstallationType=JustMe


	AddToPath=Yes (there might be a warning, but ignore it)


	RegisterPython=Yes


	Installation path=%UserProfile%Miniconda3




Check if everything is ok by running conda list in the command line (make sure to open a new command line window just
in case). You should see something like this:

C:\Users\archetypal>conda list
# packages in environment at C:\ProgramData\Miniconda3:
#
# Name                    Version                   Build  Channel
asn1crypto                1.2.0                    py37_0
ca-certificates           2019.10.16                    0
certifi                   2019.9.11                py37_0
...
win_inet_pton             1.1.0                    py37_0
wincertstore              0.2                      py37_0
yaml                      0.1.7                hc54c509_2







Install EnergyPlus & Conversion Programs

EnergyPlus is a prerequisite of archetypal. It must be installed beforehand. Moreover, archetypal contains routines that
may download IDF components that are coded in earlier versions of EnergyPlus (e.g., 7.1). For this reason, users should
also download the supplementary conversion programs [http://energyplus.helpserve.com/Knowledgebase/List/Index/46/converting-older-version-files], and install the content in the EnergyPlus installation folder:


	On Windows: C:\EnergyPlusV9-2-0\PreProcess\IDFVersionUpdater (For Windows, see automated procedure below).


	On MacOS: /Applications/EnergyPlus-9-2-0/PreProcess/IDFVersionUpdater




On Windows, this installation procedure can be automated with the following script [https://gist.github.com/samuelduchesne/aef233396167e0f961df3d62a193573e] which will download and installEnergyPlus as
well as the supplementary conversion programs.

To use the script, follow the next steps. First git must be installed beforehand with default installation parameters.
See https://git-scm.com/downloads to download git. Then the following commands will change the current directory to the
user’s Downloads folder. Then the script will be downloaded using the git clone command. Finally the script will be executed.
Copy the whole code block below in Command Prompt and Hit Enter:⏎.

cd %USERPROFILE%\Downloads
git clone https://gist.github.com/aef233396167e0f961df3d62a193573e.git
cd aef233396167e0f961df3d62a193573e
install_eplus_script.cmd





To install archetypal, follow the steps detailed below in Installing using pip




Installing using pip

If you have Python 3 already installed on your machine and don’t bother to create a virtual environment (which is
highly recommended), then simply install using the following command in the terminal:

pip install archetypal






Hint

If you encounter an issue during the installation of archetypal using pip, you can try
out Installing using conda (Anaconda) instead.





Installation within a Virtual Environment

It is highly recommended to use/install archetypal on a fresh python virtual environment. If you have any trouble
with the installation above, try installing archetypal in a new, clean virtual environment [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#managing-environments] using venv or conda. Note
that this pacakge was tested with python 3.6:

python3 -m venv archetypal
source archetypal/bin/activate





Activating the virtual environment will change your shell’s prompt to show what virtual environment you’re using, and
modify the environment so that running python will get you that particular version and installation of Python. For
example:

$ source archetypal/bin/activate
(archetypal) $ python
Python 3.5.1 (default, May  6 2016, 10:59:36)
...
>>> import sys
>>> sys.path
['', '/usr/local/lib/python35.zip', ...,
'~/envs/archetypal/lib/python3.5/site-packages']
>>>





Then you can install archetypal in this freshly created environment:

pip install archetypal





To use the new environment inside a jupyter notebook [https://jupyter-notebook.readthedocs.io/en/stable/#], we recommend using the steps described by Angelo
Basile [https://anbasile.github.io/programming/2017/06/25/jupyter-venv/]:

source archetypal/bin/activate
pip install ipykernel
ipython kernel install --user --name=archetypal





Next time you start a jupyter notebook [https://jupyter.readthedocs.io/en/latest/running.html#starting-the-notebook-server], you will have the option to choose the kernel corresponding to your
project, archetypal in this case.


[image: choosing the correct kernel in a jupyter notebook]

Fig. 1 choosing the correct kernel in a jupyter notebook.
In the kernel menu, select Change Kernel
and select the appropriate virtual env created earlier (archetypal in this case).





Installing using conda (Anaconda)


Hint

If you encounter package dependency errors while installing archetypal using pip, you can use conda instead.



Installing with conda is similar to pip. The following workflow creates a new virtual environment (named archetypal)
which contains the required dependencies. It then installs the package using pip. You will need to download the
environment.yml [https://github.com/samuelduchesne/archetypal/blob/main/environment.yml] file from the github repository. For the following code to work, first change the working
directory to the location of the downloaded environment.yml file. Here we use the conda env update method which
will work well to create a new environment using a specific dependency file in one line of code:

conda update -n base conda
conda env update -n archetypal -f environment.yml
conda activate archetypal
pip install archetypal









            

          

      

      

    

  

    
      
          
            
  
For MacOS/Linux users

MacOS or Linux users must install Wine [https://www.winehq.org/] before running archetypal. This software
will allow MacOS/Linux users to run Windows application (e.g. trnsidf.exe).


Wine installation


	In the Terminal, you have to install Homebrew with the following command line:




ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"





You will have to confirm this action by pressing enter. The Terminal might ask your password,
then you have to enter the Admin password (followed by Enter: ⏎). The installation of Homebrew
should take few seconds or minutes.

2. After installing Homebrew, you have to run ‘brew doctor’ (the Terminal might ask you)
with the following command line:

brew doctor





This action will make Homebrew inspected your system to make sure the installation is correctly set up


	Then you will need to install Xquartz using Homebrew by typing the following command line:




brew cask install xquartz






	Finally you can install Wine by copying the following command line:




brew install wine





For more information about Wine installation, you can visit the following website: https://www.davidbaumgold.com/tutorials/wine-mac/



Using WINE with archetypal convert command

The IDF to BUI converter uses an executable installed with TRNSYS (which is Windows only). Users that have bought
TRNSYS can copy the trnsidf.exe executable to their UNIX machine (MacOs or Linux) and invoke the archetypal convert
command with the --trnsidf_exe option.

Example:

archetypal convert --trnsidf-exe "<path to executable on UNIX machine>" "<path to IDF file>"





You can find the executable trnsidf.exe in the TRNSYS default installation folder:
C:\TRNSYS18\Building\trnsIDF





            

          

      

      

    

  

    
      
          
            
  
Caching

Archetypal features a caching api aimed at accelerating reproducible workflows using EnergyPlus simulations by reducing
unnecessary calls to the EnergyPlus executable or transitioning programs. Concretely, caching an IDF model means that,
for instance, if an older version model (less than 9.2) is ran, archetypal will transition a copy of that file to
version 9.2 (making a copy beforehand) and run the simulation with the matching EnergyPlus executable. The next time the
IDF() constructor is called, the cached
(transitioned) file will be readily available and used; This helps to save time especially with reproducible workflows
since transitioning files can take a while to complete.

As for simulation results, after archetypal.idfclass.idf.IDF.simulate() is called, the EnergyPlus outputs (.csv,
sqlite, mtd, .mdd, etc.) are cached in a folder structure than is identified according to the simulation parameters;
those parameters include the content of the IDF file itself (if the file has changed, a new simulation is required),
whether an annual or design day simulation is executed, etc. This means that if simulate is called a second time (let us
say after restarting a Jupyter Notebook kernel), the simulate will bypass the EnergyPlus executable and retrieve the
cached simulation results instead. This has two advantages, the first one being a quicker workflow and the second one
making sure that whatever IDF.simulation_files returns fits the parameters used with the executable. Let us use this
in a real world example.


Example

In a Jupyter Notebook, one would typically do the following:

idf = IDF.from_example_files(
    "AdultEducationCenter.idf",
    epw="USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.epw",
    design_day=True,
    annual=False,
    expandobjects=True,
    prep_outputs=True,
)





If the file would be an older version, archetypal is going to transition the file to EnergyPlus 9.2 (or any other
version specified with the as_version parameter) and execute EnergyPlus for the design_day only.

The command bellow yields a list of output files. These will be located
inside a cache folder specified by the settings.cache_folder variable (this folder path can be changed using the config
method).

>>> idf.simulate().simulation_files
[Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\AdultEducationCenter.idf'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.audit'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.bnd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.dxf'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.eio'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.end'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.err'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.eso'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.expidf'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.mdd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.mtd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.mtr'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.rdd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.shd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431bout.sql'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431btbl.csv'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\b07dbcb49b54298c5f64fe5ee730431btbl.htm'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\runargs.json'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\sqlite.err'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\b07dbcb49b54298c5f64fe5ee730431b\\USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.epw')]]





Now, if the command above is modified with annual=True and set design_day=False, then idf.simulate().simulation_files
should return the annual simulation results (which do not exist yet).

>>> idf.simulate(annual=True, design_day=False).simulation_files





Now, since the original IDF file (the version 8.9 one) has not changed, archetypal is going to look for the transitioned
file that resides in the cache folder and use that one instead of retransitioning the original file a second time. On
the other hand, since the parameters of simulate() have changed (annual instead of design_day), it is going to execute
EnergyPlus using the annual method and return the annual results (see that the second-level folder id has changed from
b07dbcb49b54298c5f64fe5ee730431b to 1cc202748b6c3c2431d203ce90e4d081; these ids may be different on your computer):

[Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.audit'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.bnd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.dxf'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.eio'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.end'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.err'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.eso'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.expidf'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.mdd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.mtd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.mtr'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.rdd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.shd'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081out.sql'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081tbl.csv'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\1cc202748b6c3c2431d203ce90e4d081tbl.htm'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\AdultEducationCenter.idf'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\runargs.json'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\sqlite.err'),
Path('cache\\b0b749f1c11f28b3d24d1d8978d1140e\\1cc202748b6c3c2431d203ce90e4d081\\USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.epw')]





If we were to rerun the first code block (annual simulation) then it would return the cached results instantly from
the cache.



Clearing the cache

To clear the cache, invoke clear_cache:





            

          

      

      

    

  

    
      
          
            
  
1. Converting IDF models

EnergyPlus models can be converted to umi template library files using archetypal.


1.1. Converting IDF to UMI

The IDF to UMI converter generates an Umi Template from one or more EnergyPlus models (IDF files). The conversion is
performed by simplifying a multi-zone and geometric model to a 2-zone and non-geometric template. In other words, a
complex EnergyPlus model is be converted to a generalized core- and perimeter-zone with aggregated performances.

Conversion can be achieved either with the command line or within a python console (interactive shell). The command
line is useful for getting started quickly but does not offer any intermediate like the interactive shell does. If
you would rather use archetypal inside a python script, then the archetypal module is fully accessible and documented.


1.1.1. Using the Command Line


Hint

In this tutorial, we will be using an IDF model from the ExampleFiles folder located inside the EnergyPlus folder.



Terminal and Command Prompt may not be the most convenient tool to use, which is quite understandable, since users may
be more familiar with graphical interfaces. archetypal does not feature a graphical interface as it is meant to be
used in a scripting environment.

The first step would be to change the current directory to the one where the idf file is located. When archetypal is
executed, temporary folders may be created to enable the conversion process. It is recommended to change the current
directory of the terminal window to any working directory of your choice.

cd "/path/to/directory"





An idf file can be converted to an umi template using the reduce command. For example, the following code will convert
the model AdultEducationCenter.idf to a json file named myumitemplate.json. Both absolute and relative paths can be
used.

archetypal reduce "/Applications/EnergyPlus-9-2-0/ExampleFiles/BasicsFiles/AdultEducationCenter.idf" "./converted/myumitemplate.json"







1.1.2. Using the Python Console

archetypal methods are accessible by importing the package.


	Load the file




First, load the EnergyPlus idf file using the archetypal.idfclass.idf.IDF class. In the following example,
the AdultEducationCenter.idf model is used.

>>> from archetypal import IDF
>>> idf = IDF.from_example_files("AdultEducationCenter.idf", epw="USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.epw")  # IDF load






	Simulate the file




The model must be simulated because the BuildingTemplate.from_idf method uses the sqlite database generated by
EnergyPlus.

>>> idf.simulate()
<IDF object AdultEducationCenter.idf
at /Applications/EnergyPlus-9-2-0/ExampleFiles/BasicsFiles/AdultEducationCenter.idf
    Version 9.2.0
Simulation Info:
| SimulationIndex       | 1                                                          |
| EnergyPlusVersion     | EnergyPlus, Version 9.2.0-921312fa1d, YMD=2023.01.28 18:44 |
| TimeStamp             | YMD=2023.01.28 18:44                                       |
| NumTimestepsPerHour   | 4                                                          |
| Completed             | 1                                                          |
| CompletedSuccessfully | 1                                                          |
    Files at 'cache/941af560028252d7311d572b9c84cee6/f79de785e8989c884dca20f1dca08c1f'>






	Create a BuildingTemplate Object




>>> from archetypal import BuildingTemplate
>>> template_obj = BuildingTemplate.from_idf(
>>>     idf, DataSource=idf.name
>>> )






	Create an UmiTemplateLibrary Object and Save




>>> from archetypal import UmiTemplateLibrary
>>> template_json = UmiTemplateLibrary(
>>>     name="my_umi_template",
>>>     BuildingTemplates=[template_obj]
>>> ).to_dict()










            

          

      

      

    

  

    
      
          
            
  
2. Reading and running IDF files

archetypal is packed up with some built-in workflows to read, edit and run EnergyPlus files.


2.1. Reading

To read an IDF file, simply call IDF with the path name. For example:

>>> from archetypal import IDF
>>> idf = IDF("in.idf)  # in.idf must in the current directory.





You can also load on of the example files by name.

>>> from archetypal import IDF
>>> idf = IDF.from_example_files("AdultEducationCenter.idf")





You can optionally pass the weather file path as well:

>>> weather = eplus_dir / "WeatherData" / "USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.epw"  # Weather file path
>>> idf = IDF(eplus_file, epw=weather)  # IDF load







2.2. Editing

Editing IDF files is based on the eppy package. The IDF object exposes the
EnergyPlus objects that make up the IDF file. These objects can be edited and new objects can be created. See the eppy
documentation [https://eppy.readthedocs.io/en/latest/] for more information on how to edit IDF files.


Hint

Pre-sets

EnergyPlus outputs can be quickly defined using the Outputs class. This class and its
methods handle adding predefined or custom outputs to an IDF model. An Outputs is
instantiated by default in an IDF model. It accessed with the
outputs attribute. For example, the idf object created above can be modified by
adding a basic set of outputs:

>>> idf.outputs.add_basics().apply()





One can specify custom outputs by calling add_custom() with a list of dict
of the form fieldname:value and then apply(). These outputs will be
appended to the IDF model only if apply() is called. See
Outputs for more details on all possible methods.





2.3. Running

To run an IDF model, simply call the simulate() function
on the IDF object. In both cases, users can also specify run options as well as output options.

For the same IDF object above:

>>> idf.simulate(epw=weather)






Hint

Caching system.

When running EnergyPlus simulations, a caching system is activated to reduce the number of calls to the
EnergyPlus executable or to reduce time spent on I/O operations such as in sql and
htm() which parse the simulation results. This caching system will save
simulation results in a folder identified by a unique identifier. This identifier is based on the content of the IDF
file, as well as EnergyPlus simulate options. This system works by invalidating any dependant attributes when
independent attributes change.







            

          

      

      

    

  

    
      
          
            
  
3. Running multiple files

Running multiple IDF files is easily achieved by using the parallel_process() method.


Hint

The parallel_process() method works with any method. You can use it to parallelize
other functions in your script.



To create a parallel run, first import the usual package methods and configure archetypal to use caching and to
show logs in the console.

>>> from path import Path
>>> from archetypal import IDF, config, settings, parallel_process
>>> import pandas as pd
>>> config(log_console=True)





Then, use glob to make a list of NECB idf files in the input_data directory (relative to this package). The weather
file path is also created:

>>> necb_basedir = Path("tests/input_data/necb")
>>> files = necb_basedir.glob("*.idf")
>>> epw = Path("tests/input_data/CAN_PQ_Montreal.Intl.AP.716270_CWEC.epw")





For good measure, load the files in a DataFrame, which we will use to create the rundict in the next step.

>>> idfs = pd.DataFrame({"file": files, "name": [file.basename() for file in files]})





The rundict, is the list of tasks we wish to do in parallel. This dictionary is passed to parallel_process(). Here, we want to execute run_eplus() with the following parameters:

>>> rundict = {
>>>     k: dict(
>>>         idfname=str(file),
>>>         prep_outputs=True,
>>>         epw=str(epw),
>>>         expandobjects=True,
>>>         verbose=True,
>>>         design_day=True,
>>>         simulate=True,
>>>     )
>>>     for k, file in idfs.file.to_dict().items()
>>> }





We also define a generic function that takes the keyword arguments defined previously and loads, simulates and
returns the SQL file path of the model.

def load_and_simulate(**kwargs):
    """Load IDF model, simulate, and return sql_file path."""
    return IDF(**kwargs).simulate().sql_file





Finally, execute parallel_process(). The resulting sql_file paths, which we defined as the
type of load_and_simulate() is returned as a dictionary with the same
keys as the index of the DataFrame.

>>> sql_files =  parallel_process(rundict, load_and_simulate, use_kwargs=True, processors=-1)
>>> sql_files
{0: Path('cache/06e92da0247c71762d64aed4bcf3cdb2/output_data/06e92da0247c71762d64aed4bcf3cdb2out.sql'),
 1: Path('cache/aee8caf562b3519942ef88f533800dd0/output_data/aee8caf562b3519942ef88f533800dd0out.sql'),
 2: Path('cache/9d14a6aa6fda03a77ed5c5c48d28a73b/output_data/9d14a6aa6fda03a77ed5c5c48d28a73bout.sql'),
 3: Path('cache/5ddfa8827d2a577aabb02d60195bf53a/output_data/5ddfa8827d2a577aabb02d60195bf53aout.sql'),
 4: Path('cache/225c3428099e2abcc4051750db12731b/output_data/225c3428099e2abcc4051750db12731bout.sql'),
 5: Path('cache/0991d42c5af387833b68adffc0d7b523/output_data/0991d42c5af387833b68adffc0d7b523out.sql'),
 6: Path('cache/e10a4bf8bae93b0b0d2ad2638c807b61/output_data/e10a4bf8bae93b0b0d2ad2638c807b61out.sql'),
 7: Path('cache/86439047af9e8ff4650d6bab460d5e70/output_data/86439047af9e8ff4650d6bab460d5e70out.sql'),
 8: Path('cache/68da0886afa316f75bc63d7e576d0228/output_data/68da0886afa316f75bc63d7e576d0228out.sql'),
 9: Path('cache/68a8be47fe4573a61d388a0101798958/output_data/68a8be47fe4573a61d388a0101798958out.sql'),
 10: Path('cache/f6f8abae5272bf607a9f53d18c10a50d/output_data/f6f8abae5272bf607a9f53d18c10a50dout.sql'),
 11: Path('cache/4cf8589df098bb0c3f2b9f8589ec6ed6/output_data/4cf8589df098bb0c3f2b9f8589ec6ed6out.sql'),
 12: Path('cache/5dd643faf859ed1aed5adffcecd0d47c/output_data/5dd643faf859ed1aed5adffcecd0d47cout.sql'),
 13: Path('cache/e7cf6ae2be8917a409c9a1acad3bc349/output_data/e7cf6ae2be8917a409c9a1acad3bc349out.sql'),
 14: Path('cache/3f122e04f7d8d19195cb8818a0be390f/output_data/3f122e04f7d8d19195cb8818a0be390fout.sql'),
 15: Path('cache/d263b5b5d3bc56f2fb3795c61ac89cfe/output_data/d263b5b5d3bc56f2fb3795c61ac89cfeout.sql')}








            

          

      

      

    

  

    
      
          
            
  
4. Schedules

archetypal can parse EnergyPlus schedules. In EnergyPlus, there are many ways to define schedules in an IDF file. The
Schedule module defines a class that handles parsing, plotting converting schedules.


4.1. Reading Schedules

archetypal can read almost any schedules defined in an IDF file using a few commands. First,

>>> import archetypal as ar
>>> idf = ar.IDF(<idf-file-path>)
>>> this_schedule = Schedule(Name='name', idf=idf)







4.2. Converting Schedules

Some tools typically rely on a group of 3 schedules; defined as a Yearly, Weekly, Daily schedule object. This is the
case for the IDF to UMI converter and for the IDF to TRNSYS
converter. The Schedule module of archetypal can handle this conversion.

The year-week-day representation for any schedule object is invoked with
the to_year_week_day() method:

>>> this_schedule.to_year_week_day()







4.3. Plotting Schedules

Schedules can be parsed as pandas.Series [http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series] objects (call the series property on a Schedule object) which then
exposes useful methods from the pandas package. For convenience, a wrapper for the plotting method is built-in the
Schedule class. To plot the full annual schedule (or a specific range), simply call the archetypal.schedule.Schedule.plot()
method. For example,

>>> this_schedule.plot(slice=("2018/01/02", "2018/01/03"), drawstyle="steps-post")









            

          

      

      

    

  

    
      
          
            
  
5. Creating an Umi template

This tutorial explains how to create an Umi Template Library from scratch using archetypal. This section presents each
required steps to create a valid Umi Template Library object. Every object will be presented with their
default parameters, and simple examples will show how to create objects with the minimum required parameters. Before
we start, here is a description of the overall structure of an Umi Template Library and the Building Templates it
contains.


5.1. Umi Template Structure

An Umi Template is a collection of various other objects that are referenced between each other. At the top of the
hierarchy, there is the UmiTemplateLibrary object which holds all the other bits and pieces making up the template
library. The second level is therefore the BuildingTemplate object. There is one BuildingTemplate for each
building models (or archetypes). Each BuildingTemplate is made of a series of children objects, and multiple
BuildingTemplates can share the same children. For example, two buildings can share the same lighting schedule or the
same opaque material.

For simplicity, this tutorial begins with the lowest level in the hierarchy (or the leaf in a graph structure): The
materials.



5.2. Defining materials

The first step is to create the library of materials from which the constructions will be made.
(used as Layers in constructions). There are OpaqueMaterial, GlazingMaterial and
GasMaterial to define.


5.2.1. Opaque materials

Here are the parameters and their default values for an OpaqueMaterial object (see OpaqueMaterial for more
information)

def __init__(
    Name,
    Conductivity,
    SpecificHeat,
    SolarAbsorptance=0.7,
    ThermalEmittance=0.9,
    VisibleAbsorptance=0.7,
    Roughness="Rough",
    Cost=0,
    Density=1,
    MoistureDiffusionResistance=50,
    EmbodiedCarbon=0.45,
    EmbodiedEnergy=0,
    TransportCarbon=0,
    TransportDistance=0,
    TransportEnergy=0,
    SubstitutionRatePattern=None,
    SubstitutionTimestep=20,
    **kwargs,
)





Users can keep the default values by simply omitting them in the constructor For example, one can create a simple list
of 4 OpaqueMaterial objects with default values. Note that the Name, Conductivity and SpecificHeat are required
parameters:

concrete = ar.OpaqueMaterial(Name="Concrete", Conductivity=0.5, SpecificHeat=800, Density=1500)
insulation = ar.OpaqueMaterial(Name="Insulation", Conductivity=0.04, SpecificHeat=1000, Density=30)
brick = ar.OpaqueMaterial(Name="Brick", Conductivity=1, SpecificHeat=900, Density=1900)
plywood = ar.OpaqueMaterial(Name="Plywood", Conductivity=0.13, SpecificHeat=800, Density=540)





Add these 4 materials to a variable named OpaqueMaterials. This variable will be referenced at the end when the
UmiTemplateLibrary object will be created.

# List of OpaqueMaterial objects (needed for Umi template creation)
OpaqueMaterials = [concrete, insulation, brick, plywood]







5.2.2. Glazing materials

The same goes for the GlazingMaterial objects (see GlazingMaterial for more information)

def __init__(
    Name,
    Density=2500,
    Conductivity=0,
    SolarTransmittance=0,
    SolarReflectanceFront=0,
    SolarReflectanceBack=0,
    VisibleTransmittance=0,
    VisibleReflectanceFront=0,
    VisibleReflectanceBack=0,
    IRTransmittance=0,
    IREmissivityFront=0,
    IREmissivityBack=0,
    DirtFactor=1.0,
    Type=None,
    Cost=0.0,
    Life=1,
    **kwargs,
)





A “Transparent Glass” object is created with the following optical and thermal properties:

glass = ar.GlazingMaterial(
    Name="Glass",
    Density=2500,
    Conductivity=1,
    SolarTransmittance=0.7,
    SolarReflectanceFront=0.5,
    SolarReflectanceBack=0.5,
    VisibleTransmittance=0.7,
    VisibleReflectanceFront=0.5,
    VisibleReflectanceBack=0.5,
    IRTransmittance=0.7,
    IREmissivityFront=0.5,
    IREmissivityBack=0.5,
)





The object is referenced in the following variable:
.. code-block:: python


# List of GlazingMaterial objects (needed for Umi template creation)
GlazingMaterials = [glass]






5.2.3. Gas materials

Here are all the parameters and their default values for a GasMaterial object (see GasMaterial for more
information)

def __init__(
    Name,
    Cost=0,
    EmbodiedCarbon=0,
    EmbodiedEnergy=0,
    SubstitutionTimestep=100,
    TransportCarbon=0,
    TransportDistance=0,
    TransportEnergy=0,
    SubstitutionRatePattern=None,
    Conductivity=2.4,
    Density=2400,
    **kwargs,
)





Example of GasMaterial object:

air = ar.GasMaterial(Name="Air", Conductivity=0.02, Density=1.24)
# List of GasMaterial objects (needed for Umi template creation)
GasMaterials = [air]








5.3. Defining material layers

Once the materials are created, layers (or MaterialLayer objects) can be created.
Here are the parameters and their default values for an MaterialLayer object

def __init__(Material, Thickness)





The Material (from OpaqueMaterial or GlazingMaterial or
GasMaterial) and Thickness are required parameters:

concreteLayer = ar.MaterialLayer(concrete, Thickness=0.2)
insulationLayer = ar.MaterialLayer(insulation, Thickness=0.5)
brickLayer = ar.MaterialLayer(brick, Thickness=0.1)
plywoodLayer = ar.MaterialLayer(plywood, Thickness=0.016)
glassLayer = ar.MaterialLayer(glass, Thickness=0.16)
airLayer = ar.MaterialLayer(air, Thickness=0.04)







5.4. Defining constructions

Once the material layers are created, wall assemblies (or OpaqueConstruction objects) can be created.


5.4.1. Opaque constructions

Here are all the parameters and default values for an
OpaqueConstruction object (see OpaqueConstruction for more information)

def __init__(
    Name,
    Layers,
    Surface_Type,
    Outside_Boundary_Condition,
    IsAdiabatic,
    **kwargs,
)





An OpaqueConstruction requires a few parameters such as the Layers (a list of OpapqueMaterial
objects), the Surface_Type (choice of “Partition”, “”

# OpaqueConstruction using OpaqueMaterial objects
wall_int = ar.OpaqueConstruction(
Layers=[plywoodLayer],
Surface_Type="Partition",
Outside_Boundary_Condition="Zone",
IsAdiabatic=True)

wall_ext = ar.OpaqueConstruction(
Layers=[concreteLayer, insulationLayer, brickLayer],
Surface_Type="Facade",
Outside_Boundary_Condition="Outdoors")

floor = ar.OpaqueConstruction(
Layers=[concreteLayer, plywoodLayer],
Surface_Type="Ground",
Outside_Boundary_Condition="Zone")

roof = ar.OpaqueConstruction(
Layers=[plywoodLayer, insulationLayer, brickLayer],
Surface_Type="Roof",
Outside_Boundary_Condition="Outdoors")
# List of OpaqueConstruction objects (needed for Umi template creation)
OpaqueConstructions = [wall_int, wall_ext, floor, roof]







5.4.2. Window constructions

Here are all the parameters and their default values for an
WindowConstruction object (see WindowConstruction [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.WindowConstruction.html] doc for more information)

def __init__(
    Layers,
    Category="Double",
    AssemblyCarbon=0,
    AssemblyCost=0,
    AssemblyEnergy=0,
    DisassemblyCarbon=0,
    DisassemblyEnergy=0,
    **kwargs,
)





Example of WindowConstruction object:

# WindowConstruction using GlazingMaterial and GasMaterial objects
window = ar.WindowConstruction(Layers=[glassLayer, airLayer, glassLayer])
# List of WindowConstruction objects (needed for Umi template creation)
WindowConstructions = [window]







5.4.3. Structure definition

Here are all the parameters and their default values for an
StructureInformation object (see StructureDefinition [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.StructureInformation.html] doc for more information)

def __init__(
    *args,
    AssemblyCarbon=0,
    AssemblyCost=0,
    AssemblyEnergy=0,
    DisassemblyCarbon=0,
    DisassemblyEnergy=0,
    MassRatios=None,
    **kwargs,
)





We observe that StructureInformation uses MassRatio objects. Here are the
parameters of MassRatio object (see MassRatio [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.MassRatio.html] doc for more information)

def __init__(HighLoadRatio=None, Material=None, NormalRatio=None)





Example of StructureInformation object:

# StructureInformation using OpaqueMaterial objects
mass_ratio = ar.MassRatio(Material=plywood, HighLoadRatio=1, NormalRatio=1)
struct_definition = ar.StructureInformation(MassRatios=[mass_ratio])
# List of StructureInformation objects (needed for Umi template creation)
StructureDefinitions = [struct_definition]








5.5. Defining schedules

Creating Umi template objects to define schedules (e.g. DaySchedule).


	Day schedules

Here are all the parameters and their default values for a
DaySchedule object (see DaySchedule doc for more information)


def __init__(
    Name=None,
    idf=None,
    start_day_of_the_week=0,
    strict=False,
    base_year=2018,
    schType=None,
    schTypeLimitsName=None,
    values=None,
    **kwargs,
)








Example of DaySchedule objects:


# Always on
sch_d_on = DaySchedule.from_values(
    Name="AlwaysOn", Values=[1] * 24, Type="Fraction", Category="Day"
)
# Always off
sch_d_off = DaySchedule.from_values(
    Name="AlwaysOff", Values=[0] * 24, Type="Fraction", Category="Day"
)
# DHW
sch_d_dhw = DaySchedule.from_values(
    Name="DHW", Values=[0.3] * 24, Type="Fraction", Category="Day"
)
# Internal gains
sch_d_gains = DaySchedule.from_values(
    Name="Gains",
    Values=[0] * 6 + [0.5, 0.6, 0.7, 0.8, 0.9, 1] + [0.7] * 6 + [0.4] * 6,
    Type="Fraction",
    Category="Day",
)
DaySchedules = [sch_d_on, sch_d_dhw, sch_d_gains, sch_d_off]










	Week schedules

Here are all the parameters and their default values for a
WeekSchedule object (see WeekSchedule doc for more information)

def __init__(
    Name=None,
    idf=None,
    start_day_of_the_week=0,
    strict=False,
    base_year=2018,
    schType=None,
    schTypeLimitsName=None,
    values=None,
    **kwargs,
)





Example of WeekSchedule objects:


# WeekSchedules using DaySchedule objects
# Always on
sch_w_on = WeekSchedule(
    Days=[sch_d_on, sch_d_on, sch_d_on, sch_d_on, sch_d_on, sch_d_on, sch_d_on],
    Category="Week",
    Type="Fraction",
    Name="AlwaysOn",
)
# Always off
sch_w_off = WeekSchedule(
    Days=[
        sch_d_off,
        sch_d_off,
        sch_d_off,
        sch_d_off,
        sch_d_off,
        sch_d_off,
        sch_d_off,
    ],
    Category="Week",
    Type="Fraction",
    Name="AlwaysOff",
)
# DHW
sch_w_dhw = WeekSchedule(
    Days=[
        sch_d_dhw,
        sch_d_dhw,
        sch_d_dhw,
        sch_d_dhw,
        sch_d_dhw,
        sch_d_dhw,
        sch_d_dhw,
    ],
    Category="Week",
    Type="Fraction",
    Name="DHW",
)
# Internal gains
sch_w_gains = WeekSchedule(
    Days=[
        sch_d_gains,
        sch_d_gains,
        sch_d_gains,
        sch_d_gains,
        sch_d_gains,
        sch_d_gains,
        sch_d_gains,
    ],
    Category="Week",
    Type="Fraction",
    Name="Gains",
)
WeekSchedules = [sch_w_on, sch_w_off, sch_w_dhw, sch_w_gains]










	Year schedules

Here are all the parameters and their default values for an
YearSchedule object (see YearSchedule [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.YearSchedule.html] doc for more information)

def __init__(
    Name=None,
    idf=None,
    start_day_of_the_week=0,
    strict=False,
    base_year=2018,
    schType=None,
    schTypeLimitsName=None,
    values=None,
    **kwargs)





YearSchedule are created using WeekSchedules defined within YearSchedulePart objects.
The YearSchedulePart serves to defines the weeks of the year for which the weekly schedule is used.
For example, we create YearSchedules from WeekSchedule objects:


# YearSchedules using DaySchedule objects
# Always on
sch_y_on = YearSchedule(
    Category="Year",
    Parts=[
        YearSchedulePart(
            FromDay=1, FromMonth=1, ToDay=31, ToMonth=12, Schedule=sch_w_on
        )
    ],
    Type="Fraction",
    Name="AlwaysOn",
)
# Always off
sch_y_off = YearSchedule(
    Category="Year",
    Parts=[
        YearSchedulePart(
            FromDay=1,
            FromMonth=1,
            ToDay=31,
            ToMonth=12,
            Schedule=sch_w_off,
        )
    ],
    Type="Fraction",
    Name="AlwaysOff",
)
# Year ON/OFF
sch_y_on_off = YearSchedule(
    Category="Year",
    Parts=[
        YearSchedulePart(
            FromDay=1, FromMonth=1, ToDay=31, ToMonth=5, Schedule=sch_w_on
        ),
        YearSchedulePart(
            FromDay=1,
            FromMonth=6,
            ToDay=31,
            ToMonth=12,
            Schedule=sch_w_off,
        ),
    ],
    Type="Fraction",
    Name="ON_OFF",
)
# DHW
sch_y_dhw = YearSchedule(
    Category="Year",
    Parts=[
        YearSchedulePart(
            FromDay=1,
            FromMonth=1,
            ToDay=31,
            ToMonth=12,
            Schedule=sch_w_dhw,
        )
    ],
    Type="Fraction",
    Name="DHW",
)
# Internal gains
sch_y_gains = YearSchedule(
    Category="Year",
    Parts=[
        YearSchedulePart(
            FromDay=1,
            FromMonth=1,
            ToDay=31,
            ToMonth=12,
            Schedule=sch_w_gains,
        )
    ],
    Type="Fraction",
    Name="Gains",
)
# List of YearSchedule objects (needed for Umi template creation)
YearSchedules = [sch_y_on, sch_y_off, sch_y_on_off, sch_y_dhw, sch_y_gains]














5.6. Defining window settings


Creating Umi template objects to define window settings

Here are all the parameters and their default values for an
WindowSetting object (see WindowSetting [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.WindowSetting.html] doc for more information)

def __init__(
    Name,
    Construction=None,
    OperableArea=0.8,
    AfnWindowAvailability=None,
    AfnDischargeC=0.65,
    AfnTempSetpoint=20,
    IsVirtualPartition=False,
    IsShadingSystemOn=False,
    ShadingSystemAvailabilitySchedule=None,
    ShadingSystemSetpoint=180,
    ShadingSystemTransmittance=0.5,
    ShadingSystemType=0,
    Type=WindowType.External,
    IsZoneMixingOn=False,
    ZoneMixingAvailabilitySchedule=None,
    ZoneMixingDeltaTemperature=2,
    ZoneMixingFlowRate=0.001,
    **kwargs)





Example of WindowSetting object:

# WindowSetting using WindowConstruction and YearSchedule objects
window_setting = ar.WindowSetting(
    Name="window_setting_1",
    Construction=window,
    AfnWindowAvailability=sch_y_off,
    ShadingSystemAvailabilitySchedule=sch_y_off,
    ZoneMixingAvailabilitySchedule=sch_y_off)
# List of WindowSetting objects (needed for Umi template creation)
WindowSettings = [window_setting]










5.7. Defining DHW settings


Creating Umi template objects to define DHW settings

Here are all the parameters and their default values for an
DomesticHotWaterSetting object (see DomesticHotWaterSetting [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.DomesticHotWaterSetting.html] doc for more information)

def __init__(
    Name,
    IsOn=True,
    WaterSchedule=None,
    FlowRatePerFloorArea=0.03,
    WaterSupplyTemperature=65,
    WaterTemperatureInlet=10,
    **kwargs)





Example of DomesticHotWaterSetting object:

# DomesticHotWaterSetting using YearSchedule objects
dhw_setting = ar.DomesticHotWaterSetting(
    Name="dwh_setting_1",
    IsOn=True,
    WaterSchedule=sch_y_dhw,
    FlowRatePerFloorArea=0.03,
    WaterSupplyTemperature=65,
    WaterTemperatureInlet=10,)
# List of DomesticHotWaterSetting objects (needed for Umi template creation)
DomesticHotWaterSettings = [dhw_setting]










5.8. Defining ventilation settings


Creating Umi template objects to define ventilation settings

Here are all the parameters and their default values for an
VentilationSetting object (see VentilationSetting [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.VentilationSetting.html] doc for more information)

def __init__(
    Name,
    NatVentSchedule=None,
    ScheduledVentilationSchedule=None,
    Afn=False,
    Infiltration=0.1,
    IsBuoyancyOn=True,
    IsInfiltrationOn=True,
    IsNatVentOn=False,
    IsScheduledVentilationOn=False,
    IsWindOn=False,
    NatVentMaxOutdoorAirTemp=30,
    NatVentMaxRelHumidity=90,
    NatVentMinOutdoorAirTemp=0,
    NatVentZoneTempSetpoint=18,
    ScheduledVentilationAch=0.6,
    ScheduledVentilationSetpoint=18,
    **kwargs)





Example of VentilationSetting object:

# VentilationSetting using YearSchedule objects
vent_setting = ar.VentilationSetting(
    Name="vent_setting_1",
    NatVentSchedule=sch_y_off,
    ScheduledVentilationSchedule=sch_y_off,)
# List of VentilationSetting objects (needed for Umi template creation)
VentilationSettings = [vent_setting]










5.9. Defining zone conditioning settings


Creating Umi template objects to define zone conditioning settings

Here are all the parameters and their default values for an
ZoneConditioning object (see ZoneConditioning [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.ZoneConditioning.html] doc for more information)

def __init__(
    Name,
    CoolingCoeffOfPerf=1,
    CoolingLimitType="NoLimit",
    CoolingSetpoint=26,
    CoolingSchedule=None,
    EconomizerType="NoEconomizer",
    HeatRecoveryEfficiencyLatent=0.65,
    HeatRecoveryEfficiencySensible=0.7,
    HeatRecoveryType="None",
    HeatingCoeffOfPerf=1,
    HeatingLimitType="NoLimit",
    HeatingSetpoint=20,
    HeatingSchedule=None,
    IsCoolingOn=True,
    IsHeatingOn=True,
    IsMechVentOn=True,
    MaxCoolFlow=100,
    MaxCoolingCapacity=100,
    MaxHeatFlow=100,
    MaxHeatingCapacity=100,
    MinFreshAirPerArea=0,
    MinFreshAirPerPerson=0.00944,
    MechVentSchedule=None,
    **kwargs)





Example of ZoneConditioning object:

# ZoneConditioning using YearSchedule objects
zone_conditioning = ar.ZoneConditioning(
    Name="conditioning_setting_1",
    CoolingSchedule=sch_y_on,
    HeatingSchedule=sch_y_on,
    MechVentSchedule=sch_y_off,)
# List of ZoneConditioning objects (needed for Umi template creation)
ZoneConditionings = [zone_conditioning]










5.10. Defining zone construction sets


Creating Umi template objects to define zone construction sets

Here are all the parameters and their default values for an
ZoneConstructionSet object (see ZoneConstructionSet [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.ZoneConstructionSet.html] doc for more information)

def __init__(
    *args,
    Zone_Names=None,
    Slab=None,
    IsSlabAdiabatic=False,
    Roof=None,
    IsRoofAdiabatic=False,
    Partition=None,
    IsPartitionAdiabatic=False,
    Ground=None,
    IsGroundAdiabatic=False,
    Facade=None,
    IsFacadeAdiabatic=False,
    **kwargs)





Example of ZoneConstructionSet objects:

# ZoneConstructionSet using OpaqueConstruction objects
# Perimeter zone
zone_constr_set_perim = ar.ZoneConstructionSet(
    Name="constr_set_perim",
    Slab=floor,
    Roof=roof,
    Partition=wall_int,
    Ground=floor,
    Facade=wall_ext)
# Core zone
zone_constr_set_core = ar.ZoneConstructionSet(
    Name="constr_set_core",
    Slab=floor,
    Roof=roof,
    Partition=wall_int,
    IsPartitionAdiabatic=True,
    Ground=floor,
    Facade=wall_ext)
# List of ZoneConstructionSet objects (needed for Umi template creation)
ZoneConstructionSets = [zone_constr_set_perim, zone_constr_set_core]










5.11. Defining zone loads


Creating Umi template objects to define zone loads

Here are all the parameters and their default values for an
ZoneLoad object (see ZoneLoad [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.ZoneLoad.html] doc for more information)

def __init__(
    Name,
    DimmingType="Continuous",
    EquipmentAvailabilitySchedule=None,
    EquipmentPowerDensity=12,
    IlluminanceTarget=500,
    LightingPowerDensity=12,
    LightsAvailabilitySchedule=None,
    OccupancySchedule=None,
    IsEquipmentOn=True,
    IsLightingOn=True,
    IsPeopleOn=True,
    PeopleDensity=0.2,
    **kwargs)





Example of ZoneLoad object:

# ZoneLoad using YearSchedule objects
zone_load = ar.ZoneLoad(
    Name="zone_load_1",
    EquipmentAvailabilitySchedule=sch_y_gains,
    LightsAvailabilitySchedule=sch_y_gains,
    OccupancySchedule=sch_y_gains)
# List of ZoneLoad objects (needed for Umi template creation)
ZoneLoads = [zone_load]










5.12. Defining zones


Creating Umi template objects to define zones

Here are all the parameters and their default values for an
Zone object (see Zone [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.Zone.html] doc for more information)

def __init__(
    Name,
    Conditioning=None,
    Constructions=None,
    DomesticHotWater=None,
    Loads=None,
    Ventilation=None,
    Windows=None,
    InternalMassConstruction=None,
    InternalMassExposedPerFloorArea=1.05,
    DaylightMeshResolution=1,
    DaylightWorkplaneHeight=0.8,
    **kwargs)





Example of Zone objects:

# Zones using ZoneConditioning, ZoneConstructionSet, DomesticWaterSetting,
# ZoneLoad, VentilationSetting, WindowSetting and OpaqueConstruction objects
# Perimeter zone
perim = ar.Zone(
    Name="Perim_zone",
    Conditioning=zone_conditioning,
    Constructions=zone_constr_set_perim,
    DomesticHotWater=dhw_setting,
    Loads=zone_load,
    Ventilation=vent_setting,
    Windows=window_setting,
    InternalMassConstruction=wall_int)
# Core zone
core = ar.Zone(
    Name="Core_zone",
    Conditioning=zone_conditioning,
    Constructions=zone_constr_set_core,
    DomesticHotWater=dhw_setting,
    Loads=zone_load,
    Ventilation=vent_setting,
    Windows=window_setting,
    InternalMassConstruction=wall_int)
# List of Zone objects (needed for Umi template creation)
Zones = [perim, core]










5.13. Defining building template


Creating Umi template objects to define building template

Here are all the parameters and their default values for an
BuildingTemplate object (see BuildingTemplate [https://archetypal.readthedocs.io/en/develop/reference/archetypal.template.BuildingTemplate.html] doc for more information)

def __init__(
    Name,
    Core=None,
    Perimeter=None,
    Structure=None,
    Windows=None,
    Lifespan=60,
    PartitionRatio=0.35,
    DefaultWindowToWallRatio=0.4,
    **kwargs)





Example of BuildingTemplate object:

# BuildingTemplate using Zone, StructureInformation and WindowSetting objects
building_template = ar.BuildingTemplate(
    Name="Building_template_1",
    Core=core,
    Perimeter=perim,
    Structure=struct_definition,
    Windows=window_setting,)
# List of BuildingTemplate objects (needed for Umi template creation)
BuildingTemplates = [building_template]










5.14. Creating Umi template


Creating Umi template from all objects defined before
(see UmiTemplate [https://archetypal.readthedocs.io/en/develop/reference/archetypal.umi_template.UmiTemplateLibrary.html] doc for more information)

Example of BuildingTemplate object:

# UmiTemplateLibrary using all lists of objects created before
umi_template = ar.UmiTemplateLibrary(
    name="unnamed",
    BuildingTemplates=BuildingTemplates,
    GasMaterials=GasMaterials,
    GlazingMaterials=GlazingMaterials,
    OpaqueConstructions=OpaqueConstructions,
    OpaqueMaterials=OpaqueMaterials,
    WindowConstructions=WindowConstructions,
    StructureDefinitions=StructureDefinitions,
    DaySchedules=DaySchedules,
    WeekSchedules=WeekSchedules,
    YearSchedules=YearSchedules,
    DomesticHotWaterSettings=DomesticHotWaterSettings,
    VentilationSettings=VentilationSettings,
    WindowSettings=WindowSettings,
    ZoneConditionings=ZoneConditionings,
    ZoneConstructionSets=ZoneConstructionSets,
    ZoneLoads=ZoneLoads,
    Zones=Zones,
)





And finally we use this following line of code to create the json file
that can be imported into Umi as a template:

umi_template.to_dict()












            

          

      

      

    

  

    
      
          
            
  
6. Editing UMI Template Files

archetypal can read an UMI Template File using the command:

from archetypal import UmiTemplateLibrary
template_library = UmiTemplateLibrary.open("file.json")





which returns an UmiTemplateLibrary object.


6.1. Combining template libraries

Combine two template libraries like this:

from archetypal import UmiTemplateLibrary
lib_a = UmiTemplateLibrary.open("a.json")
lib_b = UmiTemplateLibrary.open("b.json")

lib_c = lib_a + lib_b





The resulting lib_c will contain all components from both libraries. To avoid
duplicates (components that are equal), run:

lib_c.unique_components()





Plot the hierarchy of of an UmiTempalteLIbrary

a = UmiTemplateLibrary.open(file)
a.unique_components()
G = a.to_graph()
pos = graphviz_layout(G, prog="dot", args="-s300")
write_dot(G, "G.dot")
fig, ax = plt.subplots(1, 1, figsize=(100,40))
nx.draw(G, pos, with_labels=True, arrows=True, ax=ax)
for group, values in a:
    print("rank = same; " + "; ".join((f'"{v}"' for v in values)) +";")
plt.show()
fig.tight_layout()
fig.savefig("template.pdf")









            

          

      

      

    

  

    
      
          
            
  
7. Troubleshooting


7.1. MacOs Catalina Compatibility

With the release of MacOs Catalina, Apple requires apps to be signed and/or notarized. This helps users make sure they
open apps from trusted developers. It appears that the transition files that are needed to upgrade older IDF files to
the latest version of EnergyPlus are not signed. Thus, users using archetypal on the MacOs platform might encounter an
error of this type: “Transition cannot be opened because the developer cannot be verified”. (see Missing transition
programs for more details on downloading and installing older transition programs).

[image: _images/unsigned_app_error.png]
It seems that clicking “cancel” will still work, although the prompt will appear for all older transition files
repetitively. An issue has been submitted here [https://github.com/NREL/EnergyPlus/issues/7631] on the EnergyPlus
github repository. Hopefully, the developers of EnergyPlus will be able to address this issue soon.



7.2. Missing transition programs

For older EnergyPlus file versions (< 7-1-0), the necessary transition files are not included with the EnergyPlus
installer. Users must download and install missing transition programs manually. This can be acheived in two simple
steps:


	Navigate to the EnergyPlus Knowledgebase [http://energyplus.helpserve.com/Knowledgebase/List/Index/46/converting-older-version-files] and download the appropriate transition programs depending on the platform
you are using (MacOs, Linux or Windows). These programs come in the form of a zipped folder.


	Extract all the files from the zipped folder to your EnergyPlus installation folder at
./PreProcess/IDFVersionUpdater/. For example, on MacOs with EnergyPlus version 8-9-0, this path is
/Applications/EnergyPlus-8-9-0/PreProcess/IDFVersionUpdater/.




[image: _images/extract_transition_EP_files.gif]




            

          

      

      

    

  

    
      
          
            
  
Command reference

Archetypal provides many commands for managing packages and environments.
The links on this page provide help for each command.
You can also access help from the command line with the
--help flag:

archetypal --help








            

          

      

      

    

  

    
      
          
            
  
Modules


Settings












IDF Class












UMI Template Library












Template Classes












Template Helper Classes

Classes that support the Template Classes classes above.












Graph Module












Schedule Module












Data Portal












EnergyDataFrame


Note

EnergyDataFrame is now part of its own package energy-pandas [https://github.com/samuelduchesne/energy-pandas].





EnergySeries


Note

EnergySeries is now part of its own package energy-pandas [https://github.com/samuelduchesne/energy-pandas].





Report Data












Tabular Data












Utils







	timeit [https://docs.python.org/3/library/timeit.html#module-timeit]

	Tool for measuring execution time of small code snippets.










            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  
Converting IDF to UMI

The IDF to UMI converter generates an Umi Template from one or more EnergyPlus models (IDF files). The conversion is
performed by simplifying a multi-zone and geometric model to a 2-zone and non-geometric template. In other words, a
complex EnergyPlus model is be converted to a generalized core- and perimeter-zone with aggregated performances.

Conversion can be achieved either with the command line or within a python console (interactive shell). The command
line is useful for getting started quickly but does not offer any intermediate like the interactive shell does. If
you would rather use archetypal inside a python script, then the archetypal module is fully accessible and documented.


Using the Command Line


Hint

In this tutorial, we will be using an IDF model from the ExampleFiles folder located inside the EnergyPlus folder.



Terminal and Command Prompt may not be the most convenient tool to use, which is quite understandable, since users may
be more familiar with graphical interfaces. archetypal does not feature a graphical interface as it is meant to be
used in a scripting environment.

The first step would be to change the current directory to the one where the idf file is located. When archetypal is
executed, temporary folders may be created to enable the conversion process. It is recommended to change the current
directory of the terminal window to any working directory of your choice.

cd "/path/to/directory"





An idf file can be converted to an umi template using the reduce command. For example, the following code will convert
the model AdultEducationCenter.idf to a json file named myumitemplate.json. Both absolute and relative paths can be
used.

archetypal reduce "/Applications/EnergyPlus-9-2-0/ExampleFiles/BasicsFiles/AdultEducationCenter.idf" "./converted/myumitemplate.json"







Using the Python Console

archetypal methods are accessible by importing the package.


	Load the file




First, load the EnergyPlus idf file using the archetypal.idfclass.idf.IDF class. In the following example,
the AdultEducationCenter.idf model is used.

>>> from archetypal import IDF
>>> idf = IDF.from_example_files("AdultEducationCenter.idf", epw="USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.epw")  # IDF load






	Simulate the file




The model must be simulated because the BuildingTemplate.from_idf method uses the sqlite database generated by
EnergyPlus.

>>> idf.simulate()
<IDF object AdultEducationCenter.idf
at /Applications/EnergyPlus-9-2-0/ExampleFiles/BasicsFiles/AdultEducationCenter.idf
    Version 9.2.0
Simulation Info:
| SimulationIndex       | 1                                                          |
| EnergyPlusVersion     | EnergyPlus, Version 9.2.0-921312fa1d, YMD=2023.01.28 18:44 |
| TimeStamp             | YMD=2023.01.28 18:44                                       |
| NumTimestepsPerHour   | 4                                                          |
| Completed             | 1                                                          |
| CompletedSuccessfully | 1                                                          |
    Files at 'cache/941af560028252d7311d572b9c84cee6/f79de785e8989c884dca20f1dca08c1f'>






	Create a BuildingTemplate Object




>>> from archetypal import BuildingTemplate
>>> template_obj = BuildingTemplate.from_idf(
>>>     idf, DataSource=idf.name
>>> )






	Create an UmiTemplateLibrary Object and Save




>>> from archetypal import UmiTemplateLibrary
>>> template_json = UmiTemplateLibrary(
>>>     name="my_umi_template",
>>>     BuildingTemplates=[template_obj]
>>> ).to_dict()









            

          

      

      

    

  

    
      
          
            
  

            

          

      

      

    

  

    
      
          
            
  

            

          

      

      

    

  

    
      
          
            
  

            

          

      

      

    

  _images/20181211121922.png
localhost

Title
— Jupyter Title @ Logout
Kernel starting, please wait... | Trusted |pyumi [ ]
File Edit View Insert Cell Kernel Widgets Help
+ x & B » v ) Run| Interrupt [
Restart
| Restart & Clear Output
In [1]: 1  import glob Restart & Run All
2 import pandas as Roconnect
3 import numpy as
4 import pyumi as  Shutdown
5 import logging & !
6 %matplotlib inli Change kernel » Julia 0.6.1
7 import seaborn &. ...
8 import matplotlib.pyplot as plt Python 3
~ osmnx E
In [2]: 1 pu.config(log_console=True, log_file pyumi ‘ue, umitemplate=
| rivus |
In [3]: 1 files = glob.glob("../data/necb/NECB_zull_Montreal_ 1ar/*.idf")






_images/extract_transition_EP_files.gif





_static/file.png





_images/unsigned_app_error.png
“Transition-V7-1-0-to-V7-2-0" cannot be
opened because the developer cannot be
verified.

macOS cannot verify that this app is free
from malware.

Move to Trash Cancel






_static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          archetypal 2.17
        


        		
          Installation
          
            		
              Requirements
            


            		
              Installation from scratch
              
                		
                  Download & Install MiniConda (or the full Anaconda)
                


                		
                  Install EnergyPlus & Conversion Programs
                


              


            


            		
              Installing using pip
            


            		
              Installation within a Virtual Environment
            


            		
              Installing using conda (Anaconda)
            


          


        


        		
          For MacOS/Linux users
          
            		
              Wine installation
            


            		
              Using WINE with archetypal convert command
            


          


        


        		
          Caching
          
            		
              Example
            


            		
              Clearing the cache
            


          


        


        		
          Converting IDF models
          
            		
              Converting IDF to UMI
              
                		
                  Using the Command Line
                


                		
                  Using the Python Console
                


              


            


          


        


        		
          Reading and Running IDF files
          
            		
              Reading
            


            		
              Editing
            


            		
              Running
            


          


        


        		
          Parallel Processing
        


        		
          Managing Schedules
          
            		
              Reading Schedules
            


            		
              Converting Schedules
            


            		
              Plotting Schedules
            


          


        


        		
          Creating Umi template
          
            		
              Umi Template Structure
            


            		
              Defining materials
              
                		
                  Opaque materials
                


                		
                  Glazing materials
                


                		
                  Gas materials
                


              


            


            		
              Defining material layers
            


            		
              Defining constructions
              
                		
                  Opaque constructions
                


                		
                  Window constructions
                


                		
                  Structure definition
                


              


            


            		
              Defining schedules
            


            		
              Defining window settings
            


            		
              Defining DHW settings
            


            		
              Defining ventilation settings
            


            		
              Defining zone conditioning settings
            


            		
              Defining zone construction sets
            


            		
              Defining zone loads
            


            		
              Defining zones
            


            		
              Defining building template
            


            		
              Creating Umi template
            


          


        


        		
          Reading and Editing UMI Template Files
          
            		
              Combining template libraries
            


          


        


        		
          Troubleshooting
          
            		
              MacOs Catalina Compatibility
            


            		
              Missing transition programs
            


          


        


        		
          Command reference
        


        		
          Modules
          
            		
              Settings
            


            		
              IDF Class
            


            		
              UMI Template Library
            


            		
              Template Classes
            


            		
              Template Helper Classes
            


            		
              Graph Module
            


            		
              Schedule Module
            


            		
              Data Portal
            


            		
              EnergyDataFrame
            


            		
              EnergySeries
            


            		
              Report Data
            


            		
              Tabular Data
            


            		
              Utils
            


          


        


      


    
  

