archetypal.zone_graph.ZoneGraph
- class archetypal.zone_graph.ZoneGraph(incoming_graph_data=None, **attr)[source]
A subclass of
networkx.Graph
. This class implements useful methods to visualize and navigate a template along the thermal adjacency of its zones.There are currently two methods to visualize the graph:
plot in 3d
to get a 3-dimensional view of the building.plot in 2d
to get a 2-dimensional view of the building zones
Note
A Graph stores nodes and edges with optional data, or attributes.
Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. By convention None is not used as a node.
Edges are represented as links between nodes with optional key/value attributes.
Initialize a graph with edges, name, or graph attributes.
Wrapper around the
networkx.Graph
class.- Parameters
incoming_graph_data – input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
attr – keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs.
- classmethod from_idf(idf, log_adj_report=True, **kwargs)[source]
Create a graph representation of all the building zones. An edge between two zones represents the adjacency of the two zones.
If skeleton is False, this method will create all the building objects iteratively over the building zones.
- Parameters
- Returns
The building’s zone graph object
- Return type
- plot_graph3d(fig_height=None, fig_width=6, save=False, show=True, close=False, ax=None, axis_off=False, cmap='plasma', dpi=300, file_format='png', azim=- 60, elev=30, proj_type='persp', filename=None, annotate=False, plt_style='ggplot')[source]
Plot the
archetypal.template.ZoneGraph
in a 3D plot.The size of the node is relative to its
networkx.Graph.degree()
. The node degree is the number of edges adjacent to the node.The nodes are positioned in 3d space according to the mean value of the surfaces centroids. For concave volumes, this corresponds to the center of gravity of the volume. Some weird positioning can occur for convex volumes.
Todo
Create an Example
- Parameters
fig_height (float) – matplotlib figure height in inches.
fig_width (float) – matplotlib figure width in inches.
save (bool) – if True, save the figure as an image file to disk.
show (bool) – if True, show the figure.
close (bool) – close the figure (only if show equals False) to prevent display.
ax (matplotlib.axes._axes.Axes, optional) – An existing axes object on which to plot this graph.
axis_off (bool) – If True, turn off the matplotlib axis.
cmap (str) – The name a registered
matplotlib.colors.Colormap
.dpi (int) – the resolution of the image file if saving.
file_format (str) – the format of the file to save (e.g., ‘jpg’, ‘png’, ‘svg’, ‘pdf’)
azim (float) – Azimuthal viewing angle, defaults to -60.
elev (float) – Elevation viewing angle, defaults to 30.
proj_type (str) – Type of projection, accepts ‘persp’ and ‘ortho’.
filename (str) – the name of the file if saving.
annotate (bool or str or tuple) – If True, annotates the node with the Zone Name. Pass an EpBunch field_name to retrieve data from the zone EpBunch. Pass a tuple (data, key) to retrieve data from the graph: eg. (‘core’, None) will retrieve the attribute ‘core’ associated to the node. The second tuple element serves as a key on the first: G.nodes(data=data)[key].
plt_style (str, dict, or list) – A style specification. Valid options are: - str: The name of a style or a path/URL to a style file. For a list of available style names, see style.available . - dict: Dictionary with valid key/value pairs for
matplotlib.rcParams
. - list: A list of style specifiers (str or dict) applied from first to last in the list.
- Returns
fig, ax
- Return type
fig, ax
- plot_graph2d(layout_function, *func_args, color_nodes=None, fig_height=None, fig_width=6, node_labels_to_integers=False, legend=False, with_labels=True, arrows=True, save=False, show=True, close=False, ax=None, axis_off=False, cmap='plasma', dpi=300, file_format='png', filename='unnamed', plt_style='ggplot', extent='tight', **kwargs)[source]
Plot the adjacency of the zones as a graph. Choose a layout from the
networkx.drawing.layout
module, theGraphviz AGraph (dot)
module, theGraphviz with pydot
module. Then, plot the graph using matplotlib using thenetworkx.drawing.py_lab
Examples
>>> import networkx as nx >>> G = BuildingTemplate().from_idf >>> G.plot_graph2d(nx.nx_agraph.graphviz_layout, ('dot'), >>> font_color='w', legend=True, font_size=8, >>> color_nodes='core', >>> node_labels_to_integers=True, >>> plt_style='seaborn', save=True, >>> filename='test')
- Parameters
layout_function (func) – One of the networkx layout functions.
*func_args – The layout function arguments as a tuple. The first argument (self) is already supplied.
color_nodes (bool or str) – False by default. If a string is passed the nodes are colored according to a data attribute of the graph. By default, the original node names is accessed with the ‘name’ attribute.
fig_height (float) – matplotlib figure height in inches.
fig_width (float) – matplotlib figure width in inches.
node_labels_to_integers –
legend –
with_labels (bool, optional) – Set to True to draw labels on the
arrows (bool, optional) – If True, draw arrowheads. Note: Arrows will be the same color as edges.
save (bool) – if True, save the figure as an image file to disk.
show (bool) – if True, show the figure.
close (bool) – close the figure (only if show equals False) to prevent display.
ax (matplotlib.axes._axes.Axes, optional) – An existing axes object on which to plot this graph.
axis_off (bool) – If True, turn off the matplotlib axis.
cmap (str) – The name a registered
matplotlib.colors.Colormap
.dpi (int) – the resolution of the image file if saving.
file_format (str) – the format of the file to save (e.g., ‘jpg’, ‘png’, ‘svg’, ‘pdf’)
filename (str) – the name of the file if saving.
plt_style (str, dict, or list) – A style specification. Valid options are: - str: The name of a style or a path/URL to a style file. For a list of available style names, see style.available . - dict: Dictionary with valid key/value pairs for
matplotlib.rcParams
. - list: A list of style specifiers (str or dict) applied from first to last in the list.extent –
**kwargs – keywords passed to
networkx.draw_networkx()
- Returns
The fig and ax objects
- Return type
(tuple)
- property core_graph
Returns a copy of the ZoneGraph containing only core zones
- property perim_graph
Returns a copy of the ZoneGraph containing only perimeter zones
- info(node=None)[source]
Print short summary of information for the graph or the node n.
- Parameters
node (any hashable) – A node in the graph
- add_edge(u_of_edge, v_of_edge, **attr)
Add an edge between u and v.
The nodes u and v will be automatically added if they are not already in the graph.
Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See examples below.
- Parameters
u_of_edge (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
v_of_edge (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.
See also
add_edges_from
add a collection of edges
Notes
Adding an edge that already exists updates the edge data.
Many NetworkX algorithms designed for weighted graphs use an edge attribute (by default weight) to hold a numerical value.
Examples
The following all add the edge e=(1, 2) to graph G:
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1, 2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1, 2)]) # add edges from iterable container
Associate data to edges using keywords:
>>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
For non-string attribute keys, use subscript notation.
>>> G.add_edge(1, 2) >>> G[1][2].update({0: 5}) >>> G.edges[1, 2].update({0: 5})
- add_edges_from(ebunch_to_add, **attr)
Add all the edges in ebunch_to_add.
- Parameters
ebunch_to_add (container of edges) – Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data.
attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.
See also
add_edge
add a single edge
add_weighted_edges_from
convenient way to add weighted edges
Notes
Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments.
Examples
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3
Associate data to edges
>>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
- add_node(node_for_adding, **attr)
Add a single node node_for_adding and update node attributes.
- Parameters
node_for_adding (node) – A node can be any hashable Python object except None.
attr (keyword arguments, optional) – Set or change node attributes using key=value.
See also
Examples
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3
Use keywords set/change node attributes:
>>> G.add_node(1, size=10) >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
Notes
A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.
On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn’t change on mutables.
- add_nodes_from(nodes_for_adding, **attr)
Add multiple nodes.
- Parameters
nodes_for_adding (iterable container) – A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments.
See also
Examples
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o']
Use keywords to update specific node attributes for every node.
>>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4)
Use (node, attrdict) tuples to update attributes for specific nodes.
>>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11
- add_weighted_edges_from(ebunch_to_add, weight='weight', **attr)
Add weighted edges in ebunch_to_add with specified weight attr
- Parameters
ebunch_to_add (container of edges) – Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u, v, w) where w is a number.
weight (string, optional (default= 'weight')) – The attribute name for the edge weights to be added.
attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.
See also
add_edge
add a single edge
add_edges_from
add multiple edges
Notes
Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.
Examples
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
- property adj
Graph adjacency object holding the neighbors of each node.
This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So G.adj[3][2][‘color’] = ‘blue’ sets the color of the edge (3, 2) to “blue”.
Iterating over G.adj behaves like a dict. Useful idioms include for nbr, datadict in G.adj[n].items():.
The neighbor information is also provided by subscripting the graph. So for nbr, foovalue in G[node].data(‘foo’, default=1): works.
For directed graphs, G.adj holds outgoing (successor) info.
- adjacency()
Returns an iterator over (node, adjacency dict) tuples for all nodes.
For directed graphs, only outgoing neighbors/adjacencies are included.
- Returns
adj_iter – An iterator over (node, adjacency dictionary) for all nodes in the graph.
- Return type
iterator
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [(n, nbrdict) for n, nbrdict in G.adjacency()] [(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
- clear()
Remove all nodes and edges from the graph.
This also removes the name, and all graph, node, and edge attributes.
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes) [] >>> list(G.edges) []
- clear_edges()
Remove all edges from the graph without altering nodes.
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear_edges() >>> list(G.nodes) [0, 1, 2, 3] >>> list(G.edges) []
- copy(as_view=False)
Returns a copy of the graph.
The copy method by default returns an independent shallow copy of the graph and attributes. That is, if an attribute is a container, that container is shared by the original an the copy. Use Python’s copy.deepcopy for new containers.
If as_view is True then a view is returned instead of a copy.
Notes
All copies reproduce the graph structure, but data attributes may be handled in different ways. There are four types of copies of a graph that people might want.
Deepcopy – A “deepcopy” copies the graph structure as well as all data attributes and any objects they might contain. The entire graph object is new so that changes in the copy do not affect the original object. (see Python’s copy.deepcopy)
Data Reference (Shallow) – For a shallow copy the graph structure is copied but the edge, node and graph attribute dicts are references to those in the original graph. This saves time and memory but could cause confusion if you change an attribute in one graph and it changes the attribute in the other. NetworkX does not provide this level of shallow copy.
Independent Shallow – This copy creates new independent attribute dicts and then does a shallow copy of the attributes. That is, any attributes that are containers are shared between the new graph and the original. This is exactly what dict.copy() provides. You can obtain this style copy using:
>>> G = nx.path_graph(5) >>> H = G.copy() >>> H = G.copy(as_view=False) >>> H = nx.Graph(G) >>> H = G.__class__(G)
Fresh Data – For fresh data, the graph structure is copied while new empty data attribute dicts are created. The resulting graph is independent of the original and it has no edge, node or graph attributes. Fresh copies are not enabled. Instead use:
>>> H = G.__class__() >>> H.add_nodes_from(G) >>> H.add_edges_from(G.edges)
View – Inspired by dict-views, graph-views act like read-only versions of the original graph, providing a copy of the original structure without requiring any memory for copying the information.
See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html.
- Parameters
as_view (bool, optional (default=False)) – If True, the returned graph-view provides a read-only view of the original graph without actually copying any data.
- Returns
G – A copy of the graph.
- Return type
Graph
See also
to_directed
return a directed copy of the graph.
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.copy()
- property degree
A DegreeView for the Graph as G.degree or G.degree().
The node degree is the number of edges adjacent to the node. The weighted node degree is the sum of the edge weights for edges incident to that node.
This object provides an iterator for (node, degree) as well as lookup for the degree for a single node.
- Parameters
nbunch (single node, container, or all nodes (default= all nodes)) – The view will only report edges incident to these nodes.
weight (string or None, optional (default=None)) – The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.
- Returns
If a single node is requested
deg (int) – Degree of the node
OR if multiple nodes are requested
nd_view (A DegreeView object capable of iterating (node, degree) pairs)
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.degree[0] # node 0 has degree 1 1 >>> list(G.degree([0, 1, 2])) [(0, 1), (1, 2), (2, 2)]
- edge_subgraph(edges)
Returns the subgraph induced by the specified edges.
The induced subgraph contains each edge in edges and each node incident to any one of those edges.
- Parameters
edges (iterable) – An iterable of edges in this graph.
- Returns
G – An edge-induced subgraph of this graph with the same edge attributes.
- Return type
Graph
Notes
The graph, edge, and node attributes in the returned subgraph view are references to the corresponding attributes in the original graph. The view is read-only.
To create a full graph version of the subgraph with its own copy of the edge or node attributes, use:
G.edge_subgraph(edges).copy()
Examples
>>> G = nx.path_graph(5) >>> H = G.edge_subgraph([(0, 1), (3, 4)]) >>> list(H.nodes) [0, 1, 3, 4] >>> list(H.edges) [(0, 1), (3, 4)]
- property edges
An EdgeView of the Graph as G.edges or G.edges().
edges(self, nbunch=None, data=False, default=None)
The EdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, G.edges[u, v][‘color’] provides the value of the color attribute for edge (u, v) while for (u, v, c) in G.edges.data(‘color’, default=’red’): iterates through all the edges yielding the color attribute with default ‘red’ if no color attribute exists.
- Parameters
nbunch (single node, container, or all nodes (default= all nodes)) – The view will only report edges incident to these nodes.
data (string or bool, optional (default=False)) – The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v).
default (value, optional (default=None)) – Value used for edges that don’t have the requested attribute. Only relevant if data is not True or False.
- Returns
edges – A view of edge attributes, usually it iterates over (u, v) or (u, v, d) tuples of edges, but can also be used for attribute lookup as edges[u, v][‘foo’].
- Return type
EdgeView
Notes
Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.
Examples
>>> G = nx.path_graph(3) # or MultiGraph, etc >>> G.add_edge(2, 3, weight=5) >>> [e for e in G.edges] [(0, 1), (1, 2), (2, 3)] >>> G.edges.data() # default data is {} (empty dict) EdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) >>> G.edges.data("weight", default=1) EdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) >>> G.edges([0, 3]) # only edges incident to these nodes EdgeDataView([(0, 1), (3, 2)]) >>> G.edges(0) # only edges incident to a single node (use G.adj[0]?) EdgeDataView([(0, 1)])
- get_edge_data(u, v, default=None)
Returns the attribute dictionary associated with edge (u, v).
This is identical to G[u][v] except the default is returned instead of an exception if the edge doesn’t exist.
- Parameters
u (nodes) –
v (nodes) –
default (any Python object (default=None)) – Value to return if the edge (u, v) is not found.
- Returns
edge_dict – The edge attribute dictionary.
- Return type
dictionary
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G[0][1] {}
Warning: Assigning to G[u][v] is not permitted. But it is safe to assign attributes G[u][v][‘foo’]
>>> G[0][1]["weight"] = 7 >>> G[0][1]["weight"] 7 >>> G[1][0]["weight"] 7
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.get_edge_data(0, 1) # default edge data is {} {} >>> e = (0, 1) >>> G.get_edge_data(*e) # tuple form {} >>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0 0
- has_edge(u, v)
Returns True if the edge (u, v) is in the graph.
This is the same as v in G[u] without KeyError exceptions.
- Parameters
u (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
v (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
- Returns
edge_ind – True if edge is in the graph, False otherwise.
- Return type
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.has_edge(0, 1) # using two nodes True >>> e = (0, 1) >>> G.has_edge(*e) # e is a 2-tuple (u, v) True >>> e = (0, 1, {"weight": 7}) >>> G.has_edge(*e[:2]) # e is a 3-tuple (u, v, data_dictionary) True
The following syntax are equivalent:
>>> G.has_edge(0, 1) True >>> 1 in G[0] # though this gives KeyError if 0 not in G True
- has_node(n)
Returns True if the graph contains the node n.
Identical to n in G
- Parameters
n (node) –
Examples
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.has_node(0) True
It is more readable and simpler to use
>>> 0 in G True
- is_directed()
Returns True if graph is directed, False otherwise.
- is_multigraph()
Returns True if graph is a multigraph, False otherwise.
- property name
String identifier of the graph.
This graph attribute appears in the attribute dict G.graph keyed by the string “name”. as well as an attribute (technically a property) G.name. This is entirely user controlled.
- nbunch_iter(nbunch=None)
Returns an iterator over nodes contained in nbunch that are also in the graph.
The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
- Parameters
nbunch (single node, container, or all nodes (default= all nodes)) – The view will only report edges incident to these nodes.
- Returns
niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.
- Return type
iterator
- Raises
NetworkXError – If nbunch is not a node or sequence of nodes. If a node in nbunch is not hashable.
See also
Graph.__iter__
Notes
When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.
To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.
If nbunch is not a node or a (possibly empty) sequence/iterator or None, a
NetworkXError
is raised. Also, if any object in nbunch is not hashable, aNetworkXError
is raised.
- neighbors(n)
Returns an iterator over all neighbors of node n.
This is identical to iter(G[n])
- Parameters
n (node) – A node in the graph
- Returns
neighbors – An iterator over all neighbors of node n
- Return type
iterator
- Raises
NetworkXError – If the node n is not in the graph.
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> [n for n in G.neighbors(0)] [1]
Notes
Alternate ways to access the neighbors are
G.adj[n]
orG[n]
:>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge("a", "b", weight=7) >>> G["a"] AtlasView({'b': {'weight': 7}}) >>> G = nx.path_graph(4) >>> [n for n in G[0]] [1]
- property nodes
A NodeView of the Graph as G.nodes or G.nodes().
Can be used as G.nodes for data lookup and for set-like operations. Can also be used as G.nodes(data=’color’, default=None) to return a NodeDataView which reports specific node data but no set operations. It presents a dict-like interface as well with G.nodes.items() iterating over (node, nodedata) 2-tuples and G.nodes[3][‘foo’] providing the value of the foo attribute for node 3. In addition, a view G.nodes.data(‘foo’) provides a dict-like interface to the foo attribute of each node. G.nodes.data(‘foo’, default=1) provides a default for nodes that do not have attribute foo.
- Parameters
data (string or bool, optional (default=False)) – The node attribute returned in 2-tuple (n, ddict[data]). If True, return entire node attribute dict as (n, ddict). If False, return just the nodes n.
default (value, optional (default=None)) – Value used for nodes that don’t have the requested attribute. Only relevant if data is not True or False.
- Returns
Allows set-like operations over the nodes as well as node attribute dict lookup and calling to get a NodeDataView. A NodeDataView iterates over (n, data) and has no set operations. A NodeView iterates over n and includes set operations.
When called, if data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node, attribute value) where the attribute is specified in data. If data is True then the attribute becomes the entire data dictionary.
- Return type
NodeView
Notes
If your node data is not needed, it is simpler and equivalent to use the expression
for n in G
, orlist(G)
.Examples
There are two simple ways of getting a list of all nodes in the graph:
>>> G = nx.path_graph(3) >>> list(G.nodes) [0, 1, 2] >>> list(G) [0, 1, 2]
To get the node data along with the nodes:
>>> G.add_node(1, time="5pm") >>> G.nodes[0]["foo"] = "bar" >>> list(G.nodes(data=True)) [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})] >>> list(G.nodes.data()) [(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes(data="foo")) [(0, 'bar'), (1, None), (2, None)] >>> list(G.nodes.data("foo")) [(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes(data="time")) [(0, None), (1, '5pm'), (2, None)] >>> list(G.nodes.data("time")) [(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes(data="time", default="Not Available")) [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')] >>> list(G.nodes.data("time", default="Not Available")) [(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
If some of your nodes have an attribute and the rest are assumed to have a default attribute value you can create a dictionary from node/attribute pairs using the default keyword argument to guarantee the value is never None:
>>> G = nx.Graph() >>> G.add_node(0) >>> G.add_node(1, weight=2) >>> G.add_node(2, weight=3) >>> dict(G.nodes(data="weight", default=1)) {0: 1, 1: 2, 2: 3}
- number_of_edges(u=None, v=None)
Returns the number of edges between two nodes.
- Parameters
u (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
v (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
- Returns
nedges – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes. If the graph is directed, this only returns the number of edges from u to v.
- Return type
See also
Examples
For undirected graphs, this method counts the total number of edges in the graph:
>>> G = nx.path_graph(4) >>> G.number_of_edges() 3
If you specify two nodes, this counts the total number of edges joining the two nodes:
>>> G.number_of_edges(0, 1) 1
For directed graphs, this method can count the total number of directed edges from u to v:
>>> G = nx.DiGraph() >>> G.add_edge(0, 1) >>> G.add_edge(1, 0) >>> G.number_of_edges(0, 1) 1
- number_of_nodes()
Returns the number of nodes in the graph.
- Returns
nnodes – The number of nodes in the graph.
- Return type
See also
order
identical method
__len__
identical method
Examples
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.number_of_nodes() 3
- order()
Returns the number of nodes in the graph.
- Returns
nnodes – The number of nodes in the graph.
- Return type
See also
number_of_nodes
identical method
__len__
identical method
Examples
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.order() 3
- remove_edge(u, v)
Remove the edge between u and v.
- Parameters
u (nodes) – Remove the edge between nodes u and v.
v (nodes) – Remove the edge between nodes u and v.
- Raises
NetworkXError – If there is not an edge between u and v.
See also
remove_edges_from
remove a collection of edges
Examples
>>> G = nx.path_graph(4) # or DiGraph, etc >>> G.remove_edge(0, 1) >>> e = (1, 2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2, 3, {"weight": 7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple
- remove_edges_from(ebunch)
Remove all edges specified in ebunch.
- Parameters
ebunch (list or container of edge tuples) –
Each edge given in the list or container will be removed from the graph. The edges can be:
2-tuples (u, v) edge between u and v.
3-tuples (u, v, k) where k is ignored.
See also
remove_edge
remove a single edge
Notes
Will fail silently if an edge in ebunch is not in the graph.
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch = [(1, 2), (2, 3)] >>> G.remove_edges_from(ebunch)
- remove_node(n)
Remove node n.
Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
- Parameters
n (node) – A node in the graph
- Raises
NetworkXError – If n is not in the graph.
See also
Examples
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> list(G.edges) [(0, 1), (1, 2)] >>> G.remove_node(1) >>> list(G.edges) []
- remove_nodes_from(nodes)
Remove multiple nodes.
- Parameters
nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.
See also
Examples
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> list(G.nodes) []
- size(weight=None)
Returns the number of edges or total of all edge weights.
- Parameters
weight (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.
- Returns
size – The number of edges or (if weight keyword is provided) the total weight sum.
If weight is None, returns an int. Otherwise a float (or more general numeric if the weights are more general).
- Return type
numeric
See also
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.size() 3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edge("a", "b", weight=2) >>> G.add_edge("b", "c", weight=4) >>> G.size() 2 >>> G.size(weight="weight") 6.0
- subgraph(nodes)
Returns a SubGraph view of the subgraph induced on nodes.
The induced subgraph of the graph contains the nodes in nodes and the edges between those nodes.
- Parameters
nodes (list, iterable) – A container of nodes which will be iterated through once.
- Returns
G – A subgraph view of the graph. The graph structure cannot be changed but node/edge attributes can and are shared with the original graph.
- Return type
SubGraph View
Notes
The graph, edge and node attributes are shared with the original graph. Changes to the graph structure is ruled out by the view, but changes to attributes are reflected in the original graph.
To create a subgraph with its own copy of the edge/node attributes use: G.subgraph(nodes).copy()
For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n for n in G if n not in set(nodes)])
Subgraph views are sometimes NOT what you want. In most cases where you want to do more than simply look at the induced edges, it makes more sense to just create the subgraph as its own graph with code like:
# Create a subgraph SG based on a (possibly multigraph) G SG = G.__class__() SG.add_nodes_from((n, G.nodes[n]) for n in largest_wcc) if SG.is_multigraph(): SG.add_edges_from((n, nbr, key, d) for n, nbrs in G.adj.items() if n in largest_wcc for nbr, keydict in nbrs.items() if nbr in largest_wcc for key, d in keydict.items()) else: SG.add_edges_from((n, nbr, d) for n, nbrs in G.adj.items() if n in largest_wcc for nbr, d in nbrs.items() if nbr in largest_wcc) SG.graph.update(G.graph)
Examples
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> H = G.subgraph([0, 1, 2]) >>> list(H.edges) [(0, 1), (1, 2)]
- to_directed(as_view=False)
Returns a directed representation of the graph.
- Returns
G – A directed graph with the same name, same nodes, and with each edge (u, v, data) replaced by two directed edges (u, v, data) and (v, u, data).
- Return type
DiGraph
Notes
This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.
This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html.
Warning: If you have subclassed Graph to use dict-like objects in the data structure, those changes do not transfer to the DiGraph created by this method.
Examples
>>> G = nx.Graph() # or MultiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges) [(0, 1), (1, 0)]
If already directed, return a (deep) copy
>>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_edge(0, 1) >>> H = G.to_directed() >>> list(H.edges) [(0, 1)]
- to_directed_class()
Returns the class to use for empty directed copies.
If you subclass the base classes, use this to designate what directed class to use for to_directed() copies.
- to_undirected(as_view=False)
Returns an undirected copy of the graph.
- Parameters
as_view (bool (optional, default=False)) – If True return a view of the original undirected graph.
- Returns
G – A deepcopy of the graph.
- Return type
Graph/MultiGraph
See also
Graph
,copy
,add_edge
,add_edges_from
Notes
This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.
This is in contrast to the similar G = nx.DiGraph(D) which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html.
Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method.
Examples
>>> G = nx.path_graph(2) # or MultiGraph, etc >>> H = G.to_directed() >>> list(H.edges) [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> list(G2.edges) [(0, 1)]
- to_undirected_class()
Returns the class to use for empty undirected copies.
If you subclass the base classes, use this to designate what directed class to use for to_directed() copies.
- update(edges=None, nodes=None)
Update the graph using nodes/edges/graphs as input.
Like dict.update, this method takes a graph as input, adding the graph’s nodes and edges to this graph. It can also take two inputs: edges and nodes. Finally it can take either edges or nodes. To specify only nodes the keyword nodes must be used.
The collections of edges and nodes are treated similarly to the add_edges_from/add_nodes_from methods. When iterated, they should yield 2-tuples (u, v) or 3-tuples (u, v, datadict).
- Parameters
edges (Graph object, collection of edges, or None) – The first parameter can be a graph or some edges. If it has attributes nodes and edges, then it is taken to be a Graph-like object and those attributes are used as collections of nodes and edges to be added to the graph. If the first parameter does not have those attributes, it is treated as a collection of edges and added to the graph. If the first argument is None, no edges are added.
nodes (collection of nodes, or None) – The second parameter is treated as a collection of nodes to be added to the graph unless it is None. If edges is None and nodes is None an exception is raised. If the first parameter is a Graph, then nodes is ignored.
Examples
>>> G = nx.path_graph(5) >>> G.update(nx.complete_graph(range(4, 10))) >>> from itertools import combinations >>> edges = ( ... (u, v, {"power": u * v}) ... for u, v in combinations(range(10, 20), 2) ... if u * v < 225 ... ) >>> nodes = [1000] # for singleton, use a container >>> G.update(edges, nodes)
Notes
It you want to update the graph using an adjacency structure it is straightforward to obtain the edges/nodes from adjacency. The following examples provide common cases, your adjacency may be slightly different and require tweaks of these examples:
>>> # dict-of-set/list/tuple >>> adj = {1: {2, 3}, 2: {1, 3}, 3: {1, 2}} >>> e = [(u, v) for u, nbrs in adj.items() for v in nbrs] >>> G.update(edges=e, nodes=adj)
>>> DG = nx.DiGraph() >>> # dict-of-dict-of-attribute >>> adj = {1: {2: 1.3, 3: 0.7}, 2: {1: 1.4}, 3: {1: 0.7}} >>> e = [ ... (u, v, {"weight": d}) ... for u, nbrs in adj.items() ... for v, d in nbrs.items() ... ] >>> DG.update(edges=e, nodes=adj)
>>> # dict-of-dict-of-dict >>> adj = {1: {2: {"weight": 1.3}, 3: {"color": 0.7, "weight": 1.2}}} >>> e = [ ... (u, v, {"weight": d}) ... for u, nbrs in adj.items() ... for v, d in nbrs.items() ... ] >>> DG.update(edges=e, nodes=adj)
>>> # predecessor adjacency (dict-of-set) >>> pred = {1: {2, 3}, 2: {3}, 3: {3}} >>> e = [(v, u) for u, nbrs in pred.items() for v in nbrs]
>>> # MultiGraph dict-of-dict-of-dict-of-attribute >>> MDG = nx.MultiDiGraph() >>> adj = { ... 1: {2: {0: {"weight": 1.3}, 1: {"weight": 1.2}}}, ... 3: {2: {0: {"weight": 0.7}}}, ... } >>> e = [ ... (u, v, ekey, d) ... for u, nbrs in adj.items() ... for v, keydict in nbrs.items() ... for ekey, d in keydict.items() ... ] >>> MDG.update(edges=e)
See also
add_edges_from
add multiple edges to a graph
add_nodes_from
add multiple nodes to a graph